United States Patent [19] ## Olsson [11] Patent Number: 4,538,117 [45] Date of Patent: Aug. 27, 1985 | [54] | TRANSISTOR AMPLIFIER | | |-----------------------------------|-----------------------------------|---| | [76] | | t G. Olsson, Galärvägen 13,
jö-Boo, Sweden, S-132 00 | | [21] | Appl. No.: | 483,955 | | [22] | PCT Filed: | Aug. 27, 1982 | | [86] | PCT No.: | PCT/SE82/00272 | | | § 371 Date: | Apr. 6, 1983 | | | § 102(e) Date: | Apr. 6, 1983 | | [87] | PCT Pub. No.: | WO83/00965 | | | PCT Pub. Date: | Mar. 17, 1983 | | [30] | Foreign Application Priority Data | | | Aug. 28, 1981 [SE] Sweden 8105111 | | | | [52] | U.S. Cl | | | [56] | References Cited | | | U.S. PATENT DOCUMENTS | | | 3,557,092 5/1971 Kubicz. 4,072,908 2/1978 Murari et al. . Primary Examiner-James B. Mullins 4,382,195 5/1983 Pohl et al. 330/298 X Attorney, Agent, or Firm-Birch, Stewart, Kolasch & Birch ## [57] ABSTRACT An amplifier comprising of two MOS-transistors Q_1 and Q_2 and a resistor R_1 connected as a two-pole between a DC power source, PS₁, and a load Z_L ; in order to avoid harmful influences on the amplifier from the load current, and to obtain a simple control unit for this purpose: - (a) the emitters (sources) of Q_1 and Q_2 form one pole of the two-pole, and one side of R_1 is connected in series with the collector (drain) of Q_1 , and the other side of R_1 together with the collector (drain) of Q_2 form the other pole of the two-pole, - (b) the resistance of R_1 is of the same magnitude as Z_L , - (c) a mainly constant-DC-voltage-generating network, V_B, is connected between the gates of Q₁ and Q₂, with a polarity causing Q₂ to conduct less than Q₁, and a voltage causing Q₂ not to conduct before Q₁ conducts or aims to conduct the full rated current, i.e. a current of the same magnitude as the output current, - (d) the driver stage is connected to the gate of Q₁ or to the gate of Q₂ or at some other point in the constant-DC-voltage-generating network, V_B. ## 3 Claims, 5 Drawing Figures